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This paper reports on a new series of laboratory observations in which both the unsteady and
the convective components of the water particle acceleration arising beneath an extreme
two-dimensional transient wave were determined. The waveform investigated was produced by
focusing frequency components within an irregular wave train, such that a large number of zero
up-crossings arise at one point in space and time. For a given underlying set of frequency
components, this produces an extreme event that has the maximum wave slope and therefore
also the largest horizontal water particle accelerations. Spectral analysis, based upon the water
surface elevation measured at the focal location, con"rms that there are signi"cant transfers of
energy into the high-frequency components. Neither a linear random wave theory nor a steady
nonlinear wave theory, both of which are commonly used in design applications, are able to
correctly model these frequency components. As a result, such solutions provide a poor
description of the large unsteady accelerations arising close to the water surface. Furthermore,
since they are also unable to model the spatial evolution of the wave group, inaccurate
predictions of the convective accelerations result. In contrast, a fully nonlinear unsteady wave
theory, similar to that originally proposed by Fenton & Rienecker (1980), provides a good
description of the laboratory data. To assess the importance of the nonlinear accelerations the
inertia forces acting on a vertical, surface-piercing, cylinder are calculated and comparisons
made with the nonlinear slender body forces identi"ed by Rainey (1989, 1995). These compari-
sons con"rm the importance of the applied wave model and suggest that the dominant
contribution to the high-frequency forcing arises due to the nonlinearity of the wave motion.
These results have applications in O!shore Engineering where transient structural de#ections,
occurring at frequencies well above the wave frequency, have been observed in a number of
deep-water structures. � 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

ALTHOUGH THE DESCRIPTION OF EXTREME OCEAN WAVES has been the subject of sustained
interest in recent years, the majority of this work has sought to de"ne the characteristics of
the largest or highest waves in which the maximum water particle velocities arise. This
emphasis is related to the fact that in O!shore Engineering such waves de"ne the design
conditions for many classes of "xed and #oating structures. For example, if one considers
a typical steel space frame, or lattice structure, the diameter of the individual members (D)
will be such that the Keulegan}Carpenter number KC";¹/D, where ; is the maximum
wave-induced orbital velocity and ¹ is the wave period, is greater than 20. In this case, the
0889}9746/02/030391#26 $35.00/0 � 2002 Elsevier Science Ltd. All rights reserved.
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viscous drag forces dominate and the applied forces are proportional to the square of the
incident water particle velocities measured (or predicted) in the absence of the structure.
Alternatively, if the diameter of an individual member increases such that KC45, the
potential #ow forces will exceed the viscous drag forces. If, in this case, it is again assumed
that the structure causes no disturbance to the incident wave"eld (i.e., there is no scattering
or di!raction) the maximum force per unit length is dependent upon the water particle
accelerations rather than the velocities. As a result, a second category of extreme waves is
required in which the slope of the water surface, rather than the crest elevation, is
maximised. It is these waves that the present paper will address.

2. BACKGROUND

Recent work concerning the description of extreme waves in random or irregular seas has
clearly demonstrated that in the vicinity of an extreme wave crest both the water surface
elevation and the underlying water particle velocities di!er signi"cantly from the linear sum
of the component free waves. For example, Baldock et al. (1996), hereafter referred to as
BST, provide a detailed laboratory study of large transient water waves. In each of their
examples, a large focused wave group was created by simultaneously generating a large
number of frequency components, and adjusting their relative phasing so that constructive
interference between the wave crests occurred at one point in space and time. This approach
has been adopted by several previous researchers, notably Longuet-Higgins (1974) and
Rapp & Melville (1990), and is believed to be representative of the way in which large
deep-water ocean waves evolve in a broad-banded sea. Evidence to support this view is
provided by a recent analysis of "eld data gathered in the northern North Sea (Jonathan
& Taylor 1995).

BST investigated the nonlinearity of these large wave events by contrasting the time
history of the water surface elevation, � (t), recorded at the focal point with a linear solution
based on the sum of the free waves generated at the wave paddle. Comparisons of this type
con"rm that these waves are indeed highly nonlinear, with maximum crest elevations as
much as 30% larger than that predicted by linear theory. Indeed, the general form of these
focused wave groups is such that the central wave crest is both higher and narrower, while
the adjacent wave troughs are broader and less deep. Results of this type, together with
detailed spectral analysis of the measured water surface elevations, led BST to suggest that
during the evolution of a focused wave event the local wave}wave interactions produce
a signi"cant shift of energy into the high-frequency components. Indeed, further compari-
sons with a second-order theory based on the sum of the wave}wave interactions "rst
identi"ed by Longuet-Higgins & Stewart (1960) con"rmed that these interactions occur at
a higher order of wave steepness (O (a�k�) and above, where a is the wave amplitude and k is
the wavenumber). These results are consistent with the numerical calculations presented by
Longuet-Higgins (1987), and suggest that an adequate representation of an extreme wave
crest can only be achieved if both the nonlinearity and the unsteadiness are incorporated
within the wave model.

Alongside the developments noted above, other researchers have sought to quantify the
nonlinear contributions to the potential #ow loading. Much of this work was motivated by
Lighthill (1979) in which he stated that there were additional nonlinear potential #ow loads
which should be added to the standardMorison's inertia term.More recently, Rainey (1989,
1995a,b), Manners & Rainey (1992), Faltinsen et al. (1995) and Newman (1996) have also
tackled this problem. Detailed discussions of these papers will be left until Section 6.
However, it is important to note that there now appears to be considerable agreement
regarding the description of the nonlinear forces, although there is perhaps ongoing debate
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as to the wave conditions within which the solutions are valid. In particular, an additional
second-order force (often referred to as the axial divergence term) has been derived
independently by Rainey (1989) and Faltinsen et al. (1995). Furthermore, although the
third-order loads predicted by Manners & Rainey (1992) appear substantially smaller than
those derived by Faltinsen et al. (1995), the latter solution includes the local disturbance of
the wave"eld due to the presence of the cylinder, whereas the former was derived for
a genuinely slender body in that the position of the water surface was una!ected by the
structure. After correcting for this e!ect, Rainey (1995a) provides a uni"ed result.

Although the individual contributions noted above are undoubtedly signi"cant, it is
important to note that recent papers have developed along two quite separate strands: those
primarily concerned with the nonlinearity of extreme ocean waves, and those seeking to
identify the additional nonlinear forces appropriate to a potential #ow model. The present
paper will attempt to bridge this gap, and will demonstrate that an accurate description of
the nonlinear water particle accelerations is critical to the prediction of the applied #uid
loading.

These results have important practical implications in that it is now widely recognised
that large o!shore platformsmay be susceptible to transient structural de#ections occurring
at natural frequencies that are substantially higher than the dominant wave frequencies.
These events, which are commonly referred to as &&ringing'', have been observed in both
model test data (Stansberg 1997) and "eld data from instrumented platforms. However,
despite a concerted research e!ort, it is not yet possible to accurately predict either the
occurrence or the magnitude of this dynamic response.

The present paper continues in Section 3 with a brief description of a kinematics model
that is capable of incorporating both the nonlinearity and the unsteadiness of an extreme
wave group. In Section 4, a new experimental study is described in which an irregular wave
train is generated, with the phasing of the individual wave components adjusted so that the
focused or extreme event involves maximising the wave slope rather than the crest elevation.
Kinematics data is gathered at a large number of spatial positions so that both the unsteady
and the convective components of acceleration can be de"ned throughout the #ow "eld.
Comparisons between the wave model and the measured data are presented in Section 5.
Further comparisons with typical design solutions, involving a nonlinear steady wave
theory and a linear random wave theory, highlight the importance of neglecting either the
unsteadiness or the nonlinearity of an extreme wave event. Having validated the
wave model, the magnitude of the inertial loads acting on a vertical, surface-piercing,
cylinder are assessed in Section 6. The paper concludes in Section 7 with a number of
recommendations concerning the description of an extreme wave event and the calculation
of the associated inertial loads.

3. WAVE MODELLING

We have already noted that the experimental data presented by BST suggest that a success-
ful wave model must include both the nonlinearity and the unsteadiness of an extreme wave
event. Unfortunately, the commonly applied wave theories tend to neglect one or other of
these characteristics. For example, both a "fth-order Stokes solution (Fenton 1985) or
a higher-order stream function solution (Dean 1965) assumes that the wave-form propa-
gates without change of form; while a linear random wave theory neglects the nonlinearity
and assumes that all the wave components are freely propagating and therefore satisfy the
linear dispersion equation. The only analytical model that partially includes both nonlin-
earity and unsteadiness is the second-order solution originally proposed by Longuet-
Higgins & Stewart (1960) and further developed by Sharma & Dean (1981). However,
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Longuet-Higgins (1987) has already demonstrated that for the simpli"ed case of short waves
propagating on long waves, the nonlinear wave}wave interactions will be signi"cantly
larger than those predicted by the second-order solution as the steepness of the long wave
increases. More recently, BST demonstrated experimentally that this is also true in steep
broad-banded sea states. These arguments concerning the extent of the nonlinearity are
equally applicable to the hybrid second-order models (Stansberg 1993; Ye & Zhang 1994;
Zhang et al. 1998) in which various forms of "ltering are applied in an attempt to identify
the free waves from a measured ocean spectrum.

In addition to the wave models discussed above, there are two categories of wave
solutions that attempt to include both nonlinearity and unsteadiness. The "rst may be
described as approximate, being based upon a time history of the water surface elevation
recorded at one spatial location, while the second involves the &&exact'' numerical solution of
the nonlinear free surface boundary conditions.

3.1. APPROXIMATE NUMERICAL MODELS

This category of solution includes both the local Fourier series solution (Sobey 1992) and
the double Fourier series solution (Baldock & Swan 1994). A full review of these methods
is given by Smith & Swan (1997). In the context of the present study, it is merely su$cient to
note that the largest errors associated with the local Fourier series solution arise where the
surface elevation exhibits little or no curvature. Unfortunately, this corresponds to the point
of in#ection where the horizontal water particle accelerations are a maximum. Further-
more, since the local Fourier series solution is based upon a "t to the surface elevation in
a small (localised) window, it is unable to resolve the frequency-di!erence terms correspond-
ing to the set-down beneath the wave group. As a result, the solution tends to overestimate
the horizontal velocities, and hence also the accelerations, with increasing distance beneath
the water surface. In contrast, the double Fourier series solution is restricted, for computa-
tional reasons, in terms of the number of harmonics that can conveniently be included
within the solution matrix. As a result, Smith & Swan (1997) conclude that the truncation of
the double Fourier series solution will lead to an underestimate of the maximum near-
surface velocities, and hence also the corresponding water particle accelerations, in steep
near-breaking waves.

3.2. &&EXACT'' NUMERICAL CALCULATIONS

If the velocity potential, �, is de"ned so that the horizontal and vertical velocity compo-
nents are given by u"�

�
and w"�

�
respectively, the boundary conditions acting on the

free surface, z"� (x, t), are given by
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where t indicates time, g is the gravitational acceleration and (x, z) are the usual Cartesian
co-ordinates in which x is measured in the direction of wave propagation and z vertically
upwards from the still water level. Longuet-Higgins & Cokelet (1976) "rst noted that in this
form there are no time derivatives on the right-hand side of either equation. As a result, if
a spatial description of both the water surface elevation, � (x), and the velocity potential,
�(�, x), are known at some initial time, t"t

�
, the solution can be time stepped to achieve

a spatial description of the wave"eld at t"t
�
#�t, where �t corresponds to a small time

increment. This process is then repeated for a large number of time steps, so that the
evolution of a wave"eld can be modelled over large times. In the present study, numerical
calculations were undertaken using a time-stepping procedure similar to that outlined by
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Fenton & Rienecker (1980). This approach is based upon a Fourier representation of the
surface pro"le
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where d is the constant water depth, the unknown coe$cients (a
�
, b

�
, A

�
, B

�
) are assumed to

be functions of time only, and k
�
is the fundamental wavenumber or 2�/�

�
, where �

�
is the

fundamental wavelength or the length scale over which the solution is assumed periodic.
In this form the velocity potential �, equation (3), exactly satis"es both the governing "eld

equation (� ��"0) and the bottom boundary condition [�
�
"0 on (z"!d )]. As a result,

the required solution merely involves the determination of the unknown coe$cients at each
time step. If initial values (corresponding to t"t

�
) of both the water surface elevation, �(x),

and the velocity potential, � (x, z), are speci"ed at a total of 2N locations, which are equally
spaced over the fundamental wavelength, a total of 4N linear simultaneous equations are
produced by applying the nonlinear free surface boundary conditions [equations (1)] at
each spatial location. These are su$cient to de"ne the time derivatives of the unknown
coe$cients. To simplify this procedure the surface elevation [equation (2)], and hence its
time derivative, is expressed in terms of a standard Fourier series so that da/dt and db/dt
can be solved rapidly using a fast Fourier transform. Unfortunately, the depth-variation
included within the velocity potential [equation (3)] precludes this approach and conse-
quently dA/dt and dB/dt must be solved by lower}upper (LU) matrix decomposition. This
latter task accounts for the majority of the computational e!ort.

Having de"ned the time derivatives of the coe$cients, a standard time-stepping proced-
ure is used to achieve a new solution for � and � at t"t

�
#�t. After comparing several

di!erent time-stepping procedures the Adams}Bashford}Moulton predictor}corrector
method, similar to that employed by Longuet-Higgins & Cokelet (1976), was shown to
provide the best combination of accuracy, stability and e$ciency. Gear (1971) outlines this
method such that any function f (t#�t ) is given by
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where the scheme has a truncation error of order (�t� ). The only disadvantage of this
approach is that it requires information from more than one previous time step. To
overcome this di$culty, the "rst three time steps were undertaken using a fourth-order
Runge}Kutta scheme.

To ensure that the calculations outlined above maintained an appropriate level of
accuracy, and that no spurious numerical instabilities arose, two precautions were found
necessary. Firstly, a relatively small time-step was adopted. If f

���
is the maximum
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anticipated frequency at which there is any appreciable energy, �t"0)04/ f
���

was found to
be appropriate for all cases. Secondly, to prevent the growth of any numerical instabilities
(which typically arise in the highest wavenumber components) the largest wavenumber,
Nk

�
, was limited to approximately 20 times the wavenumber corresponding to the peak of

the input spectra. In this way, highly nonlinear, near-breaking, waves could be modelled
without the need for additional numerical smoothing. In addition to these precautions, the
scheme was continuously monitored during successive calculations. In particular, to ensure
that the scheme was not adversely a!ected by truncation errors, the amplitudes of
the largest wavenumber components (a

�
, A

�
) should remain negligible at all times. If this is

not the case Nk
�
must be increased, although its upper limit is de"ned by the stability

requirement noted above. Furthermore, it is clear that the total wave energy within the
spatial domain must be conserved (Zakharov 1968). To ensure that this was indeed the case,
the total wave energy was calculated at every time step. Comparisons both between
successive time steps, and after a large number of time steps, con"rm that in all cases the
total energy was conserved to within 0)04%.

It should be noted that although the scheme outlined above provides a relatively simple
method of de"ning the nonlinear characteristics of transient water waves, it is in no sense
unique. Alternative time-stepping solutions proposed by Longuet-Higgins & Cokelet
(1976), Dold & Peregrine (1984) and, more recently, Craig & Sulem (1993) are equally
applicable. Indeed, given the nature of the matrix decomposition noted above, these
alternative methods are computationally more e$cient. However, the present paper does
not set out to recommend one time-stepping scheme over another, but rather to demon-
strate that an accurate prediction of the water particle kinematics requires a wave model
which is both fully nonlinear and dispersive, and that this has important implications for the
prediction of the nonlinear potential wave loading.

4. EXPERIMENTAL WORK

4.1. APPARATUS

The experimental investigation was undertaken within a large wave channel located in the
Department of Civil & Environmental Engineering at Imperial College (Figure 1). This
facility is 65m long, 2)8m wide, and is equipped with a numerically controlled wave paddle,
capable of working in a range of water depths (0)5m4d41)2m). In the present investiga-
tion the water depth was maintained at d"0)9m, such that the extreme waves were located
in deep water (k

�
d+3)6, where k

�
is the wavenumber corresponding to the spectral peak).

At the downstream end of the wave channel, the wave energy was dissipated on a 1:20
sloping beach. Preliminary measurements, covering an appropriate range of regular waves,
indicated that the maximum re#ection coe$cient was of the order of 8%. Given the nature
of the present study and, in particular, the need to consistently reproduce the desired waves
at the test section, this level of uncertainty was considered unacceptable. Despite several
modi"cations to the downstream conditions, including the installation of poly-ether foam
to provide additional passive absorption (see BST), the re#ection coe$cient could not be
signi"cantly reduced. To overcome this problem, the measuring procedure (outlined below)
was arranged so that the required waves were generated and sampled at the measuring
section prior to the arrival of any unwanted re#ections from the downstream end of the
wave #ume.

Within the present study, the water surface elevation was measured using an array of
surface-piercing wave gauges. Each gauge consists of two vertical wires, each 1mm in
diameter spaced 10mm apart, and provides a time history of the water surface elevation,
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Figure 1. Experimental apparatus.

ACCELERATIONS IN STEEP 2-D WATER WAVES 397
�(t), at a "xed spatial location. Previous measurements described by BST have shown that
these gauges produce no signi"cant disturbance of the #ow "eld, and have an accuracy of
$0)5mm. In addition to the surface elevation records, the underlying water particle
velocities were measured using a laser Doppler anemometer (LDA). The system employed
was based upon a 35mW helium}neon laser, and was used to create a two-beam arrange-
ment from which one component of the water particle velocity could be measured. Given
the layout of the wave #ume, particularly the restricted optical access, the laser beams were
passed down a "bre optic cable terminating at the so-called &&"bre-head''. This component
of the apparatus is cylindrical with an outside diameter of 12mm and an overall length of
125mm. At its downstream end, the laser beams emerge through a 50mm focal length
converging lens to produce an intersection or measuring volume estimated to be 0)5mm�.
The arrangement was based on a &&back-scattered'' con"guration so that the receiving
camera (or photo-multiplier) used to record the Doppler bursts was built into the "bre-
head. As a result, this was the only component of the LDA close to the measuring volume.
Previous work (Johannessen and Swan 2001) has shown that provided the "bre-head is
positioned perpendicular to the plane of the wave motion, this method of measurement
produces no signi"cant disturbance of the #ow "eld at the measuring point. To manipulate
the position of the measuring point the "bre-head was supported in a vertical traverse,
which was itself attached to a movable carriage mounted on rails located along the top of
the wave #ume. Using this arrangement, the measuring point could be located anywhere
along the centreline of the wave #ume with a positional accuracy of $1mm in the
horizontal and $0)5mm in the vertical.

To enhance the quality of the velocity data, trimon-supersilk (1000) was added locally, in
small concentrations, to provide an e!ective seeding material. In the context of the present
study, this addition is particularly important since the largest water particle accelerations
occur within the crest}trough region where the velocity signals are intermittent. To ensure
that the required velocity data is gathered close to the instantaneous water surface, the
response time of the LDA must be reduced to an absolute minimum. Preliminary measure-
ments suggest that this response is critically dependent upon the density of the seeding
material. After repeated tests the best results were achieved when the seeding was diluted in
slightly warm water (��+53C) and discharged continuously through an array of hypoder-
mic needles located approximately 0)5m upstream. Using this approach, su$cient seeding
was introduced close to the water surface and the time response of the LDA found to be of
the order of 2}3ms. As a result, the water particle kinematics could be consistently
measured to within 5mm of the water surface with an accuracy of $2%.

4.2. WAVE GENERATION

To investigate both the unsteady and the convective components of acceleration beneath an
extreme 2-D wave group, the time histories of both the horizontal and the vertical velocity
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components need to be measured at a large number of spatial locations. Given the inherent
di$culty in obtaining this information with su$cient detail to de"ne the acceleration
components (particularly the convective terms), the present study considered one highly
nonlinear wave group. BST demonstrated that for 2-D wave groups the importance of the
nonlinear wave}wave interactions increases with the wave height, and reduces with increas-
ing bandwidth. Accordingly, the wave group chosen in the present study was based upon
a relatively narrow-banded spectrum consisting of 50 wave components that were equally
spaced in the period range 0)84¹41)2 s and were of equal amplitude (�

�
"constant,

where �
�
is the amplitude of the nth wave component). If A corresponds to the linear sum of

the components wave amplitudes, �
�
"A/50, then the corresponding power spectrum,

based upon the input signal sent to the wave paddle, decays according to 	��. At this point,
it is perhaps important to note that the power spectrum associated with a wave group
arising due to the focusing of discrete wave components is di!erent from that associated
with a continuous distribution of wave components each having a random phase. In the
present tests, the power spectrum de"ning the input conditions, based on the freely
propagating wave components generated at the wave paddle, is indicated by the dashed line
in Figure 2.

Given the underlying wave spectrum, a linear analysis suggests that an extreme wave
group (measured in terms of the water surface elevation) arises due to the summation (or
focusing) of the component wave crests at one point in space and time; while an alternative
extreme (measured in terms of the wave slope) arises due to the summation of the zero
up-crossing points. The "rst of these cases has been addressed by BST and, more recently,
by Johannessen & Swan (1997). In contrast, the second case has not previously been the
subject of a laboratory investigation and is perhaps more applicable to the generation of the
maximum water particle accelerations. However, it should be stressed that these arguments
are based upon a simple linear interpretation, and that previous laboratory work has
already con"rmed the importance of the nonlinear wave}wave interactions. Indeed, BST
suggest that in the case of a narrow-banded spectrum, the maximumwater surface elevation
may be as much as 30% larger than that predicted by linear theory (�

���
"1)3A). As

a result, the associated wave slopes may in fact be steeper than those produced by the
summation of zero up-crossings.

To resolve this issue the experimental programme "rst sought to identify which of
these alternative wave groups was most appropriate. In both cases an input amplitude of
A"50mm (or �

�
"1mm) was adopted, and the wave components (Figure 2) were gener-

ated at the paddle with their relative phasing adjusted such that according to linear theory
the required focusing event occurred 13m downstream of the paddle position. In practice,



TABLE 1
Extreme waves

Focused event Linear
amplitude sum,
A (mm).


�/
t(m/s) 
�/
x

Crests 48 0)46 !0)27
Slopes 48 0)55 !0)42
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the actual focus point is shifted further downstream due to the nonlinear wave}wave
interactions. However, BST have shown that the extent of this nonlinear shift is solely
dependent upon the underlying frequency spectrum, and is therefore independent of
whether the group is formed by focused crests, troughs or slopes. In consequence, the
surface elevation records presented in Figure 3 were both measured 14)09m downstream of
the paddle. In this "gure the open symbols correspond to the summation of wave crests,
while the solid symbols correspond to the summation of wave slopes or zero up-crossings.
In both these cases, as well as all subsequent cases, the time base has been shifted so that the
focal event occurs at t"0, with negative time (t(0) occurring prior to the focal event, and
positive time (t'0) after. Spectral analysis of these data traces (Figure 2) suggest that the
former case (corresponding to the summation of wave crests) involves a greater propor-
tional shift of wave energy into the high frequencies and is therefore perhaps more
nonlinear. However, detailed considerations of the water surface gradients relating to
a slightly smaller wave (A"48mm) are presented in Table 1. These results con"rm that the
latter case (corresponding to the summation of wave slopes) involves the steepest wave
pro"le in both space and time, and hence the maximum water particle accelerations. It is
thus this type of focused event that will form the basis of the present investigation.

4.3. MEASURING PROCEDURE

Having chosen both the underlying wave spectra and the nature of the focusing event, the
next step involved the generation of the desired wave at the measuring section, 13m
downstream of the wave paddle. Unfortunately, initial measurements con"rmed that it was
extremely di$cult to adjust the relative phasing of the wave components, and then
determine, with any degree of certainty, the exact spatial location at which the maximum
wave slope arises. However, this di$culty does not arise in the case of a focused wave crest
since the symmetry of the adjacent wave troughs (Figure 3) ensures that this event is easily
identi"ed. As a result, the following two-part procedure was adopted. Firstly, the relative
phasing of the wave components was adjusted, using an iterative approach, until a focused
wave crest was generated at the centre of the measuring section. A detailed description of
this process is given in BST. Having achieved this, the second stage invoked the arguments
(noted above) concerning the downstream shifting of the focal point, and merely involved
adjusting the phase of each wave component by �/2. In this way, the focused event remains
at the desired position, but corresponds to the summation of wave slopes and therefore
represents the steepest wave pro"le.

Having produced the desired waveform at the measuring section, the nature of the
velocity measurements (see above) required this wave pro"le to be consistently reproduced
over a large number of individual runs with little or no variation in either space or time.
Preliminary measurements con"rmed that provided su$cient time was allowed for the
wave #ume to settle after each test run, repeated generations of the same wave group were
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TABLE 2
Spatial distribution of measuring positions (all dimensions in metres)

!0)44x4!0)2m !0)24x40)2m 0)24x40)4m

�(t)5z5!0)05m �x"0)050 �x"0)025 �x"0)050
�z"0)0025 �z"0)0025 �z"0)0025

!0)055z5!0)20m �x"0)050 �x"0)025 �x"0)050
�z"0)010 �z"0)010 �z"0)010

!0)205z5!0)40m �x"0)050 �x"0)025 �x"0)050
�z"0)050 �z"0)050 �z"0)050

!0)405z5!0)90m �x"0)050 �x"0)025 �x"0)050
�z"0)100 �z"0)100 �z"0)100
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essentially identical. Indeed, the maximum variation at any spatial location was found to be
less than 1% of the maximum wave height. This is close to the measuring accuracy of the
wave gauges. As a result, velocity data gathered at di!erent spatial locations during
repeated generations were assembled to provide a full-"eld, time history of the water
particle kinematics within the vicinity of the extreme wave event. Within the present tests,
a total of 2500 runs were undertaken in which both the horizontal and the vertical velocity
components were measured at 25 vertical sections within the region!0)4m4x40)4m,
where x"0 corresponds to the focal position. At each of these test-sections, the depth
variation in the velocity components was recorded at some 50 spatial locations. The
separation of these measuring points in both x and z was nonuniform, with more informa-
tion recorded close to (x"0, z"0) where the largest water particle accelerations occur.
The precise layout of the measuring points is indicated in Table 2.

At each of the 1250 spatial locations noted above, the velocity data (both u and w) were
recorded for a total of 20 s at 100Hz. To accompany each velocity record, two simultaneous
measurements of the water surface elevation were also recorded (again at 100Hz for 20 s).
The "rst of these traces de"nes the surface pro"le directly above the intersection of the laser
beams (i.e., the velocity measuring point), while the second describes the surface pro"le at
the focus location (x"0). This latter record acts both as a reference trace and ensures the
consistency of the waveform. On the basis of this data we were able to de"ne the temporal (t)
and the spatial (x, z) variation in both the water particle kinematics, u (x, z, t) and w (x, z, t),



ACCELERATIONS IN STEEP 2-D WATER WAVES 401
and the water surface elevation, �(x, t). It is this information that will be used to de"ne the
acceleration &&data'' presented in Section 5.

5. DISCUSSION OF RESULTS

In order to model the experimental data, the numerical scheme outlined in Section 3
requires input in the form of a spatial description of both the water surface elevation, � (x),
and the velocity potential, � (x), at some initial time (t"t

�
). In the present example, this

input is simply based upon the wave components generated at the wave paddle, and the
nature of the focusing event. If all the generated waves are assumed to be linear and freely
propagating, the surface pro"le at the instant of wave focusing can be predicted using linear
theory (�

�
(x) at t"0). This surface can, in turn, be represented by

�"

���
�
���

��
�
cos(	

�
t#�

�
) cos(nk

�
x)#�

�
sin(	

�
t#�

�
) sin(nk

�
x)�, (5)

where nk
�

de"nes the wavenumber of the nth component, 	
�
the corresponding wave

frequency derived from the linear dispersion relation, and �
�
a phase shift to allow the

focusing of any part of the wave cycle (�
�
"�/2 to ensure the focusing of wave slopes). The

amplitudes, �
�
, of the individual wave components are determined by a least-squares

minimisation in which equation (5) is matched to the linearly predicted water surface pro"le
at the instant of wave focusing (�

�
(x) at t"0). The principal advantage of this least-squares

"t is that it allows the position of the wave components within the wavenumber spectrum to
be "nely controlled. This, in turn, allows a good "t to the linearly predicted surface elevation
in the vicinity of a focussed event with relatively few wavenumber components. It is
important to note that, when de"ning the initial conditions, many of the �

�
values,

particularly in the high wavenumber regime, must remain zero.
To achieve a good description of the evolving wave "eld using the Fourier representation

outlined in Section 3, the fundamental wavenumber (k
�
) must be small. This ensures that

there are an adequate number of wave components within the initial input range. Further-
more, Nk

�
must be large so that no signi"cant energy is present beyond the truncation of

the series solution. This is particularly important as the nonlinear wave focuses and energy
is transferred to the higher wavenumber, or wave frequency, components (see BST). Having
de"ned appropriate values of N and k

�
, an initial time t"t

�
(where t

�
(0, since focusing

occurs at t"0) is chosen such that according to linear dispersion, both � and 
�/
x at t"t
�

are small everywhere over the fundamental wavelength, �
�
. Repeated calculations suggest

that in the present case, a su$cient criterion is that the second-order correction (Longuet-
Higgins & Stewart 1960) to any crest elevation within the fundamental domain should be
less than 2% of the linearly predicted crest height. Having identi"ed a suitable t

�
, the initial

coe$cients appropriate to the commencement of the time-stepping procedure [equations
(2) and (3)] are given by
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By de"ning the initial conditions in this way we ensure that the linear characteristics of
the focused wave group are accurately reproduced in the vicinity of the focal event
(x"t"0). This is, of course, an essential prerequisite when attempting to model the
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nonlinear properties of any large wave event. Furthermore, the present method has the
added advantage that it does not involve successive iteration, nor does it require a prior
description of the nonlinear water surface pro"le. As such, it is in marked contrast to the
results presented by Skyner (1996) and is appropriate to design calculations. The data
presented within this section is divided into two parts. The "rst concerns the time history of
the velocity components measured at speci"c spatial locations, and is used to de"ne the
unsteady acceleration components (
u/
t, and 
w/
t). In the second part, the more di$cult
task of de"ning the spatial variability of the velocity components is tackled, and the
resulting data used to determine the relative importance of the nonlinear convective terms
(u
u/
x#w
u/
z and u
w/
x#w
w/
z).

5.1. TIME DEPENDENCE

Figure 4 describes the time history of the water surface elevation, �(t), measured at the focal
location and compares the measured data, indicated by the solid symbols, with several
di!erent wave models. The "rst, indicated by the thin line, corresponds to a linear wave
model based upon the free waves generated at the wave paddle. These waves de"ne the
input spectrum represented by the dashed line in Figure 2. It is clear from both Figures
2 and 4 that the neglect of the nonlinear wave}wave interactions and, in particular, the
tendency of the local interactions to move energy into the high frequencies, leads to
a greater energy density in the vicinity of the extreme event. As a result, both the &&steepness''
of the wave pro"le (
�/
t at t"0) and the overall crest}trough asymmetry are signi"cantly
larger than that predicted by a linear solution. Indeed, given the very poor description of the
water surface pro"le this linear solution will not be considered further. In contrast, the solid
line given in Figure 4 corresponds to the time-stepping procedure outlined in Section 3. This
model is in good agreement with the measured data at all times and, given the nature of the
initial conditions (see above), adequately re#ects the importance of the nonlinear
wave}wave interactions.

Figure 4 also compares the measured data with an 18th-order steady wave solution based
on the method proposed by Sobey et al. (1987). This solution, which is indicated by a dashed
line, assumes that the large wave event propagates without change of form and is based
upon a representative wave height and wave period. In the present case, the input
parameters were chosen to provide the best-possible "t to the steepest section of the wave
pro"le, since it is here that the maximum water particle accelerations arise. As a result, the
wave height (H) was based upon the distance between the maximum wave crest (occurring
at t"0)18 s in Figure 4) and the preceding wave trough (t"!0)25 s); while the wave
period (¹ ) was determined from the down-crossings identi"ed either side of the maximum
slope (t"!0)5 s and 0)4 s). Although this approach di!ers considerably from the usual
method of applying a regular wave solution, subsequent comparisons have shown that it
provides the best-possible description of the water particle motion. Indeed, it is common in
design practice to base a regular wave solution on a zero up-crossing period and the
includedwave height, or that occurring between two up-crossings. Preliminary calculations,
not presented in this paper, indicate that if such an approach is adopted the results would
(in this case) signi"cantly underestimate almost every aspect of the wave"eld.

In Figure 5(a), the time history of the horizontal water particle velocity measured at the
still water level (z"0) is compared to the various wave models. On the right-hand side of
this "gure, (t'0) the measured data corresponds to velocities arising beneath the largest
wave crest. Comparisons between this data and the steady wave solution suggest that
although this model provides a reasonable description of the water surface elevation in the
vicinity of the extreme event (Figure 4), it signi"cantly overpredicts the maximum velocities



E
le

va
tio

n 
(m

)

Time (s)

_2.0 _1.5 _0.5 0 0.5 1.5 2.01.0
_0.02

_0.04

_0.06

0.02

0.04

0.06

0.08

0_1.0

Figure 4. Predicted water surface elevations, �(t): �, measured data; }}}}} , linear theory; - - - - - -, steady
nonlinear wave theory;000, time-stepping solution.

_0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

_1.25 _1.05 _0.85 _0.65 _0.45 _0.25 _0.05 0.15 0.35 0.55 0.75

Time (s)

V
el

oc
ity

, u
(t

)(
m

/s
)

_0.30

_0.25

_0.20

_0.15

_0.10

_0.05

0

0.05

0.10

0 0.1 0.2 0.3 0.4 0.5 0.6

Velocity, u(z)(m/s)

D
ep

th
, z

(m
)

(a)

(b)

Figure 5. Horizontal velocity. (a) u(t) at z"0 and (b) u(z) at t"0)18 s: �, measured data; *** , linear
random wave theory; - - - - - - , steady nonlinear wave theory;000, time-stepping solution.

ACCELERATIONS IN STEEP 2-D WATER WAVES 403
arising at t"0)18 s. In contrast, the thin line presented in Figure 5(a) corresponds to an
alternative linear formulation, usually referred to as linear random wave theory, in which
the included linear harmonics are based upon a Fourier "t to the measured water surface
elevation rather than the free waves generated at the wave paddle. In this case, the predicted
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velocities have been &&stretched'' or empirically corrected using the Wheeler transformation
(Wheeler 1970). This approach is necessary to remove the e!ect of high-frequency contami-
nation (Sobey 1990) arising due to the extrapolation of the solution to the instantaneous
water surface. In the present paper, this approach is included not because it is expected to
give the best results, but because it represents a commonly applied design solution.
However, it is clear from Figure 5(a) that although this solution is based upon a Fourier "t
to the measured surface, the empirical correction combined with the misinterpretation of
the nonlinear wave components (they are all assumed to be free waves satisfying the linear
dispersion equation), leads to a very signi"cant underprediction of the #uid velocities. In
contrast, the time-stepping procedure indicated by the solid line is in good agreement with
the velocity data. These results are consistent with BST in that they con"rm that a good
description of the water surface elevation does not provide a su$cient basis for a realistic
prediction of the underlying water particle kinematics. Indeed, the neglect of either the
unsteadiness or the nonlinearity may be expected to produce signi"cant errors.

On the left-hand side of Figure 5(a) (t(0) the measured data corresponds to the
horizontal velocities measured beneath the preceding wave crest. In this case, the time-
stepping procedure is again in good agreement with the measured data; while the under-
prediction of the linear random wave theory is much reduced. This latter agreement arises
because the preceding wave is less steep and therefore the nonlinearity less signi"cant.
However, it does not follow that a steady wave solution, based on a modi"ed wave height
and wave period, would give similarly good results since although the nonlinearity has
reduced the dispersive properties (or unsteadiness) remain.

Figure 5(b) concerns the depth variation in the maximum horizontal velocities arising
beneath the largest wave crest (u(z) at t"0)18 s). The measured data is again compared to
a steady wave solution, a linear random wave theory (with empirical correction) and the
present time-stepping procedure. These results con"rm that while the steady solution
overpredicts and the linear random wave theory underpredicts, the time-stepping solution
provides a good description of the measured data throughout the water column. As one
might expect, the di!erences between the various models are largest close to the water
surface. Indeed, at greater depths beneath the surface, there is increasing agreement between
the linear randomwave theory and the time-stepping procedure. An explanation for this lies
in the fact that in deep water the dominant nonlinear interactions involve a shift of energy
into the high frequencies (Figure 2). These components decay rapidly with depth, and
consequently the #uid motion within the interior of the #ow becomes increasingly linear.
However, comparisons between the present results and the numerical calculations under-
taken by Smith & Swan (1997) suggest that these arguments only apply in deep water. In
intermediate and shallow water the low-frequency, or frequency-di!erence terms, become
signi"cant. These correspond to the global interactions, or set-down beneath the wave
group, and thus decay very gradually with depth. As a result, a linear solution tends to
overestimate the #uid velocities arising in the lower #uid layers. Although the results
presented in Figure 5(a, b) speci"cally relate to the horizontal water particle velocities,
similar trends were also observed when comparing the vertical velocity components with
the above noted wave models.

Having measured the time history of the water particle velocities, u(t) and w (t), at a large
number of spatial locations, the individual data records were curve "tted and numerically
di!erentiated to de"ne the time history of the unsteady or local water particle accelerations,

u/
t(t) and 
w/
t(t). Figure 6(a) concerns the horizontal component of the unsteady
acceleration &&measured'' at the still water level (z"0) in the vicinity of the extreme wave
event (x"0). Within this "gure the laboratory data are again compared to a linear random
wave theory with empirical correction, a nonlinear steady wave solution, and the proposed
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time-stepping scheme. These comparisons con"rm the importance of the nonlinear wave
harmonics when seeking to de"ne the maximum local accelerations arising close to the
water surface. For example, the linear random wave theory is shown to underestimate the
present data by as much as 30%. This result is particularly important since in the vicinity of
the focal position (t"0), which corresponds to the zero up-crossing, the magnitude of the
&&empirical'' correction (Wheeler 1970) applied within the linear random wave theory is very
small. As a result, the observed di!erence between the measured data and this theory
unambiguously re#ects the misinterpretation of the nonlinear wave harmonics. Further-
more, the inability of the nonlinear steady wave model to describe either the maximum local
acceleration, or indeed its variation with time, con"rms that the unsteadiness of the wave
event is important even over relatively short time periods. In contrast, the present timestep-
ping procedure provides a good description of the measured data.

Figure 6(b) concerns the depth variation in the unsteady component of the horizontal
acceleration arising directly beneath the focal event (x"0, t"0). These data were again
produced by curve "tting and numerically di!erentiating the time history of the horizontal
velocities recorded at x"0. To determine the maximum value of this acceleration above
the level of the wave trough (i.e., where the velocity signals become intermittent) some
extrapolation of the velocity data within the time domain was necessary, particularly close
to z"0. Where this approach has been applied, the respective data points given in Figure
6(b) are identi"ed by open symbols. As a consequence of the curve "tting and numerical
di!erentiation, the data presented in Figure 6(b) is more scattered than the velocity pro"le
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presented previously [Figure 5(b)]. Nevertheless, the inability of either the linear random
wave theory or the steady nonlinear wave theory to describe the data is clear, whereas the
time-stepping procedure is in reasonable agreement.

Although the present paper is primarily concerned with the accelerations associated with
the extreme wave event, comparisons similar to those presented in Figure 6(a) were also
undertaken in the vicinity of the preceding zero up-crossing (t"!1)0 s in Figure 4). In this
case both the time-stepping procedure and the linear random wave theory are in good
agreement with the measured data. This is consistent with our previous discussion of the
water particle velocities arising beneath less extreme waves, and explains why Zelt et al.
(1995) found reasonably good agreement between measured and predicted accelerations
based on a linear formulation. Indeed, the present results also appear to be consistent with
Stansberg & Gudmestad (1996) in which they concluded that detailed measurements of the
maximum water particle accelerations arising close to the water surface in highly nonlinear
waves were required before the success (or otherwise) of an empirically corrected linear
random wave theory could be accurately assessed.

5.2. SPATIAL DEPENDENCE

The previous comparisons have clearly demonstrated the importance of the nonlinear
wave}wave interactions. In the present section, we will further demonstrate that, in respect
of a spatial representation, additional errors arise because a steady wave theory assumes
that the wave-form propagates without change of form, whilst a linear random wave theory
assumes that all the wave components are freely propagating and therefore satisfy the linear
dispersion equation. In practice, many of the nonlinear harmonics will represent bound
waves, travelling at very di!erent phase velocities. One way to demonstrate this e!ect is to
consider a spatial description of the water surface elevation, � (x), at the instant of wave
focusing (t"0). Figure 7 shows that within this frame of reference, the nonlinear steady
wave theory neglects the evolution of the wave "eld and essentially reproduces the time
history of the surface elevation with horizontal scaling (i.e., the wave height remains
constant). Such a solution is clearly inadequate, leading to a large over-prediction of both
the wave height and the crest elevation recorded in the spatial domain at the instant of wave
focusing. (Note: In an unsteady wave "eld these values di!er from the corresponding values
recorded in the time domain.) Likewise, a linear random wave theory produces an equally
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poor description of the measured data. In particular, it underestimates the advancing crest
height (i.e., � (x) at x"!0)25m) by some 25%. Accordingly, one would expect this latter
solution to underestimate the spatial gradient of the surface pro"le at focus.

To further examine the spatial variability of the water surface elevation, Figure 8(a}c)
provides time histories of the water surface elevation recorded at three upstream locations
(x"!0)90, !0)40 and !0)25m). In each case, the measured data is compared to both
a linear random wave theory and the present time-stepping procedure. These comparisons
again con"rm the inability of a linear random wave theory to model the spatial evolution of
an extreme wave-form. In contrast, the time-stepping procedure is in good agreement with
the measured data at all points in space and time.
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Figure 9(a) and 9(b) provides two examples of the depth variation in the spatial gradients
of the velocity components (
u/
x and 
w/
z). This data was de"ned by numerically
di!erentiating velocity pro"les corresponding to u(x) and w(z) recorded at the instant of
wave focusing. In the former case, it should be noted that the spatial description of the
velocity components in the horizontal direction are not as well de"ned as those in the
vertical direction (i.e., a 24 point "t rather than a 50 point "t). As a result, the spatial
gradients presented in Figure 9(a) show more scatter than those presented in Figure 9(b).
Nevertheless, it is clear from both of these "gures that neither the linear random wave
theory nor the nonlinear steady wave theory provides an adequate description of the spatial
gradients appropriate to the calculation of the convective accelerations. In contrast, the
time-stepping procedure is in good agreement with the measured data.

6. INERTIAL LOADING

To assess the signi"cance of the present results to inertial loading and, in particular, to
determine the relative importance of the various nonlinear contributions, the forces acting
on a vertical cylinder extending from the bottom boundary up through the water surface
have been calculated. The cylinder is assumed to be rigid with an external diameter of
D"0)1m. In relation to the extreme wave event identi"ed in Figure 4, the cylinder has
a diameter to wavelength ratio of D/�"0)1, and a corresponding Keulegan}Carpenter
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number of ;¹/D"3)0. Using these criteria the test conditions are outside the typical
di!raction regime (D/�'0)2), and it may be assumed that the #uid loading is inertia
dominated. This case was speci"cally chosen such that the nonlinear potential loading
originally considered by Rainey (1989, 1995a, b), and further developed by Faltinsen et al.
(1995) is directly applicable. Using similar notation to that adopted by Je!erys & Rainey
(1994), the potential loads applied to a "xed cylinder are given by:

(i) the Morison's inertia force,

F
	�

"2�
�D�

4 �

u

t

#u

u

x

#w

u

z� ; (7)

(ii) an axial divergence force,
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; (8)

(iii) a free surface intersection force,
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�

x
M

�
u� ; (9)

where (u, w) are the components of the water particle velocity, � is the density andM
�
is the

added mass per unit length. In this form, equations (7) and (8) describe the distributed
forces, having units of N/m, while equation (9) represents a point load acting at the water
surface. Rainey (1989) derived these terms using arguments based upon the conservation of
energy coupled with the assumption that the position of the water surface is una!ected by
the presence of the structure (i.e., it corresponds to the limiting case in which the cylinder is
reduced to a line with hydrodynamic properties). In a subsequent paper, Manners & Rainey
(1992) derived identical results using an independent method based on pressure integration.
The advantage of this latter approach is that it provides some physical insight into the
source of the axial divergence force, suggesting that it is related to the rate of change of
added mass. The mathematical origin of this additional force is also clearly explained. More
recently, Faltinsen et al. (1995) considered the wave forces acting on a vertical cylinder in
which the #ow regime, involving a cylinder of diameter D and regular waves of amplitude
A and wavenumber k, is characterised by kA�1, kD�1, but A/D"O(1). This solution
di!ers from the previous work by Rainey (1989) and Manners & Rainey (1992), in that it
includes the distortion of the incident waves due to the presence of the body. In comparing
their results with Rainey (1989), Faltinsen et al. (1995) noted that the axial divergence term
appears unchanged, but that the &&third-order'' free surface force [equation (9)] is substan-
tially increased. This point is further investigated by Rainey (1995a) in which he demon-
strated, again using energy conservation, that the distortion of the free surface produces an
additional force which is quite distinct from the mechanisms identi"ed by Rainey (1989).
This so-called surface distortion force represents an additional point load acting at the
water surface:

F
��
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2g


u

t
M

�
u�. (10)

If this force is combined with the surface intersection force, equation (9), the total load is
identical to that predicted by Faltinsen et al. (1995). Following this work, Malenica
& Molin (1995) have provided further insight into the characteristics of third-harmonic
di!raction, and Newman (1996) has extended the method proposed by Faltinsen et al.
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Figure 10. (a) Total horizontal force, F(t) and (b) total over-turning moment,M (t):***, linear random wave
theory;000, time-stepping solution.
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(1995) to model (uni-directional) irregular waves. In this latter example, Newman assumed
that up to a third order of approximation, a deep-water incident-wave system could be
represented by linear superposition of the "rst-order potentials with an appropriate modi"-
cation of the dispersion equation. Unfortunately, the data presented in Section 4 (parti-
cularly Figures 2, 4 and 6) suggest that in the case of a highly nonlinear wave group,
typically associated with &&ringing'' events, this approach provides a poor description of
both the water surface elevation and the underlying water particle accelerations.

In the present example, we will set aside the rigorous ordering of the force components
adopted by previous researchers, and merely apply our best estimate of the underlying
water particle kinematics. Although this approach will clearly introduce errors due to the
absence of some higher-order force components (the solutions for which do not exist), it will
provide guidance as to the relative importance of the above noted force components and, in
particular, will de"ne the dominant source of the nonlinearity. For example, the unsteady
inertia force identi"ed by the "rst term in equation (7) is often referred to as a &&"rst-order''
force. However, this description solely arises as a result of the applied wave theory. If
a nonlinear wave theory is adopted to model the associated wave kinematics, real nonlinear
force components result. In Figure 10(a) and 10(b) the force components given in equations
(7)}(10) have been summed to give a time history of the total base shear and the correspond-
ing over-turning moment produced by the wave-form discussed in Section 5. In each of
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Figure 11. Horizontal force components. (a) Morison's inertia force, (b) axial divergence, and (c) free surface
forces: ***, linear random wave theory;000, time-stepping solution.
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these "gures the time-base is identical to that used to de"ne the wave pro"le in Figure 4, and
the calculations have been undertaken using two di!erent wave models. The "rst is based
upon an empirically corrected linear random wave theory, and therefore represents a typi-
cal design solution, while the second is based upon the present time-stepping procedure. In
Figure 10(a), the maximum total base shear predicted according to the linear wave model is
approximately 20% smaller than that predicted by the nonlinear solution. Likewise, the
total over-turning moment [Figure 10(b)] is underestimated by almost 30%. These results
merely re#ect the inability of a linear random wave theory (or, indeed, any other linear
model) to accurately predict the maximum water particle accelerations arising close to the
water surface.

The three components of the horizontal force are further considered in Figure 11(a}c),
and their relative contribution to the total base shear assessed. Figure 11(a) concerns the
Morison's inertia force [equation (7)] based upon the total water particle acceleration,
Figure 11(b) the axial divergence force [equation (8)], and Figure 11(c) the total point force
acting at the free surface [equations (9) and (10)]. Comparisons between Figure 11(b) and
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11(c) suggest that the axial divergence term is more signi"cant than the free surface force
and that in both cases, the nonlinear calculations are considerably larger than that
predicted by a linear solution. However, the relative magnitude of these terms is small in
comparison with the maximum value of the Morison's inertia term [Figure 11(a)]. Indeed,
the results presented in Figure 11(a}c) suggest that provided the total water particle
acceleration is correctly modelled using an appropriate nonlinear wave theory, Morison's
inertia force integrated up to the instantaneous water surface provides a reasonable
approximation to the total potential load.

This point is further considered in Figure 12 where the unsteady and convective contribu-
tions to Morison's inertia force are calculated using the present time-stepping procedure.
These results con"rm that the convective component is very small and since it is also
approximately 903 out of phase with the unsteady component, the nonlinear convective
accelerations make no signi"cant contribution to the maximum value of either the total
base shear or the over-turning moment. The maximum value of the inertia loading is
therefore primarily dependent upon the unsteady water particle accelerations, particularly
the large nonlinear contributions arising close to the water surface.

Although the maximum nonlinear inertia loading is undoubtedly important, it was noted
in Section 2.0 that the principal practical concerns relate to the onset of dynamic response.
As a result, the frequency content of the applied forcing is of considerable interest. Figure 13
describes two force spectra produced by taking a fast Fourier transform of the time history
of the total base-shear predicted using the above noted wave models. This "gure clearly
suggests that if the #uid motions are predicted by an appropriate nonlinear wave model (i.e.,
the present time-stepping solution), large #uid loads accounting for approximately 10% of
the maximum arise at high frequencies within the range 2}3 times the peak spectral
frequency. In contrast, the force spectra based upon a linear random wave theory predicts
signi"cantly lower forces within this range (approximately 1% of the maximum). Further-
more, Figure 14 provides four separate force spectra corresponding to the unsteady inertia
force, the convective inertia force, the axial divergence force, and the total free surface force.
In each case, these calculations are again based upon the respective contributions to the
total base shear assessed using the time-stepping solution. These results con"rm that the
contribution arising from the unsteady inertia force is dominant. In particular, this term is
associated with high-frequency force components that are at least one order of magnitude



0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (Hz)

1

10

100

1000

Fo
rc

e 

Figure 13. Frequency spectra of total horizontal force: rrr, linear random wave theory;000, time-
stepping solution.

1

10

100

1000

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (Hz)

Fo
rc

e 

Figure 14. Frequency spectra of horizontal force components: , unsteady Morison's inertia force;
**, convective Morison's inertia force;000, axial divergence force; - - - - -, free surface forces.

ACCELERATIONS IN STEEP 2-D WATER WAVES 413
larger than those associated with the axial divergence term. For example, if one considers
the force components within the above noted range (i.e., 2}3 times the peak spectral
frequency), the contribution due to the nonlinear unsteady components is again of the order
of 10% of the maximum. In contrast, the contribution due to axial divergence term is of the
order of 1%, while the convective and free surface terms contribute less than 0)2%.

7. CONCLUDING REMARKS

The present paper has considered the water particle accelerations arising beneath a highly
nonlinear transient wave group. A new series of laboratory observations have been present-
ed in which the time history of the water particle velocities have been recorded at a large
number of spatial locations. This data is used to de"ne the unsteady and convective
components of the water particle acceleration. Comparisons with these results suggest that
although a linear randomwave theory (based on a Fourier transform of the measured water
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surface elevation) and a steady nonlinear wave theory (based on an &&equivalent'' wave
height and wave period) can provide a reasonable description of the water surface pro"le in
the vicinity of the extreme event, this is not su$cient to ensure a good description of the
underlying #ow "eld. Indeed, neither of these wave models is able to predict the large
unsteady accelerations arising close to the water surface. Furthermore, although the linear
randomwave theory partially incorporates the unsteadiness of the wave motion, it is unable
to model the spatial evolution of a large transient wave. As a result, neither this solution nor
a steady wave model provides a good description of the spatial gradients of the velocity "eld
used to de"ne the convective accelerations.

These discrepancies arise due to the neglect, or misinterpretation, of the nonlinear
wave}wave interactions. In particular, spectral analysis of the water surface elevation
measured at the focal location suggests that the local interactions produce a signi"cant shift
of energy into the high-frequency components. This produces an increase in the local energy
density resulting in steeper waves with larger water particle accelerations. In contrast to the
above noted wave models, a fully nonlinear unsteady wave solution based upon the
time-stepping procedure originally proposed by Fenton & Rienecker (1980), appears to be
in good agreement with the measured data. In particular this solution, which is simply
based upon initial conditions derived from the underlying linear wave spectrum, provides
an accurate representation of the energy shifts within the vicinity of the focused event. As
a result, a good description of the underlying water particle accelerations is achieved.
Although there are undoubtedly other time-stepping procedures that would be equally
successful, it may be concluded from the present results that an accurate prediction of the
nonlinear accelerations can only be determined by a wave model that fully incorporates
both the unsteadiness and the nonlinearity of an extreme wave event.

Finally, to emphasise the importance of these results, the inertia forces acting on a vertical
surface-piercing cylinder were determined, and the relative importance of the nonlinear
contributions assessed. These results apply to a structure outside the typical di!raction
regime (i.e., D/�(0)2) and suggest that provided the unsteady water particle accelerations
are described by an appropriate nonlinear wave model, the standardMorison's inertia term
integrated up to the instantaneous water surface provides a good description of the
maximum loads. Furthermore, spectral analysis of the predicted forces suggests that the
dominant source of the high-frequency forcing, believed to be responsible for the onset of
structural &&ringing'', arises due to the nonlinearity of the wave motion rather than the
additional forces identi"ed in equations (7)}(10).

The extent to which such arguments are generally valid clearly requires further detailed
investigation, involving the generation of realistic ocean spectra and, ideally, comparisons
with measured rather than predicted force data. It is intended that such comparisons will be
provided in a second, Part II, paper. However, the present results clearly suggest that
important nonlinear forcing may arise as a consequence of the nonlinearity of the wave
motion and that such forces can only be predicted via the application of a fully nonlinear
and unsteady wave model. These "ndings appear to be in partial agreement with the
discussion provided by Rainey (1995a) in which he commented that the additional surface
distortion force is perhaps more relevant to the prediction of third-harmonic forces
associated with small waves, than in exciting &&ringing''. The present paper merely takes this
argument one step further and suggests that since the onset of structural &&ringing'' is known
to be associated with the steepest waves within a sea state, the potential loading must be
based upon a fully nonlinear description of the water particle acceleration. When this is
achieved, both the axial divergence force and the local free surface forces, derived from
a limited perturbation expansion, become less relevant to the prediction of either the
maximum potential loads or the high-frequency forcing.
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